Capturing high-resolution water demand data in commercial buildings

Author:

Melville-Shreeve Peter1,Cotterill Sarah2,Butler David1

Affiliation:

1. Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK

2. School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland

Abstract

Abstract Water demand measurements have historically been conducted manually, from meter readings less than once per month. Leading water service providers have begun to deploy smart meters to collect high-resolution data. A low-cost flush counter was developed and connected to a real-time monitoring platform for 119 ultra-low flush toilets in 7 buildings on a university campus to explore how building users influence water demand. Toilet use followed a typical weekly pattern in which weekday use was 92% ± 4 higher than weekend use. Toilet demand was higher during term time and showed a strong, positive relationship with the number of building occupants. Mixed-use buildings tended to have greater variation in toilet use between term time and holidays than office-use buildings. The findings suggest that the flush sensor methodology is a reliable method for further consideration. Supplementary data from the study's datasets will enable practitioners to use captured data for (i) forecast models to inform water resource plans; (ii) alarm systems to automate maintenance scheduling; (iii) dynamic cleaning schedules; (iv) monitoring of building usage rates; (v) design of smart rainwater harvesting to meet demand from real-time data; and (vi) exploring dynamic water pricing models, to incentivise optimal on-site water storage strategies.

Funder

Engineering and Physical Sciences Research Council

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference30 articles.

1. Anglian Water 2020 Upgraded Meters. Available from: https://www.anglianwater.co.uk/services/switch-to-a-water-meter/upgraded-meters/ (accessed 26 February 2020).

2. Short-term water demand forecasting using machine learning techniques;Journal of Hydroinformatics,2018

3. Simulating residential water demand with a stochastic end-use model;Journal of Water Resources Planning and Management,2010

4. Simulating nonresidential water demand with a stochastic end-use model;Journal of Water Resources Planning and Management,2011

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3