Coordinating multiple model predictive controllers for the management of large-scale water systems

Author:

Anand Abhay1,Galelli Stefano1,Samavedham Lakshminarayanan2,Sundaramoorthy Sitanandam3

Affiliation:

1. Singapore-Delft Water Alliance, National University of Singapore, Block EW1-01-13, 2 Engineering Drive 2, Singapore 117577

2. Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E4-06-05, 4 Engineering Drive 3, Singapore 117576

3. Department of Chemical Engineering, Pondicherry Engineering College, Pillaichavadi, Puducherry – 605014, India

Abstract

The optimal management of multi-purpose water reservoir networks is a challenging control problem, because of the simultaneous presence of multiple objectives, the uncertainties associated with the inflow processes and the several interactions between the subsystems. For such systems, model predictive control (MPC) is an attractive control strategy that can be implemented in both centralized and decentralized configurations. The latter is easy to implement and is characterized by reduced computational requirements, but its performance is sub-optimum. However, individual decentralized controllers can be coordinated and driven towards the performance of a centralized configuration. Coordination can be achieved through the communication of information between the subsystems, and the modification of the local control problems to ensure cooperation between the controllers. In this work the applicability of coordination algorithms for the operation of water reservoir networks is evaluated. The performance of the algorithms is evaluated through numerical simulation experiments on a quadruple tank system and a two reservoir water network. The analysis also includes a numerical study of the trade-off between the algorithms' computational burden and the different levels of cooperation. The results show the potential of the proposed approach, which could provide a viable alternative to traditional control methods in real-world applications.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3