Assessing pipe failure rate and mechanical reliability of water distribution networks using data-driven modeling

Author:

Tabesh M.1,Soltani J.2,Farmani R.3,Savic D.3

Affiliation:

1. Center of Excellence for Engineering and Management of Infrastructures, Department of Civil Engineering, University of Tehran, PO Box 11155-4563, Tehran, Iran

2. Department of Civil Engineering, University of Tehran, Tehran, Iran

3. Department of Engineering, School of Engineering, Computer Science and Mathematics, University of Exeter, Exeter, EX4 4QF, UK

Abstract

In this paper two models are presented based on Data-Driven Modeling (DDM) techniques (Artificial Neural Network and neuro-fuzzy systems) for more comprehensive and more accurate prediction of the pipe failure rate and an improved assessment of the reliability of pipes. Furthermore, a multivariate regression approach has been developed to enable comparison with the DDM-based methods. Unlike the existing simple regression models for prediction of pipe failure rates in which only few factors of diameter, age and length of pipes are considered, in this paper other parameters such as pressure and pipe depth, are also included. Furthermore, an investigation is carried out on most commonly used mechanical reliability relationships and the results of incorporation of the proposed pipe failure models in the reliability index are compared. The proposed models are applied to a real case study involving a large water distribution network in Iran and the results of model predictions are compared with measured pipe failure data. Compared with the results of neuro-fuzzy and multivariate regression models, the outcomes of the artificial neural network model are more realistic and accurate in the prediction of pipe failure rates and evaluation of mechanical reliability in water distribution networks.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3