Use of generalized extreme value covariates to improve estimation of trends and return frequencies for lake levels

Author:

Paynter Shayne1,Nachabe Mahmood1

Affiliation:

1. Department of Civil and Environmental Engineering, University of South Florida, Tampa, Florida 33620, USA

Abstract

One of the most important tools in water management is the accurate forecast of long-term and short-term extreme values for flood and drought conditions. Traditional methods of trend detection are not suited for hydrologic systems while traditional methods of predicting extreme frequencies may be highly inaccurate in lakes. Traditional frequency estimates assume independence from trend or initial stage. However, due to autocorrelation of lake levels, initial stage can greatly influence the severity of an event. This research utilizes the generalized extreme value (GEV) distribution with time and starting stage covariates to more accurately identify trend direction and magnitude and provide improved predictions of flood and drought stages. Traditional methods of predicting flood or drought stages significantly overpredict or underpredict stages depending on the initial stage. Prediction differences can exceed one meter, a substantial amount in regions with flat topography; these differences could result in significant alterations in evacuation plans or other management decisions such as how much lake water to release in preparation for an approaching hurricane, appropriate lake levels to maintain, minimum structure floor elevations and more accurate forecasting of future water supply or impacts to tourism. The methods utilized in this research can be applied globally.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3