A CFD modeling procedure to assess the effect of wind in settling tanks

Author:

Gkesouli A.1,Stamou A.1

Affiliation:

1. Laboratory of Applied Hydraulics, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Iroon Polytechniou 5, 15780 Athens, Greece

Abstract

Abstract We propose a systematic procedure that combines computational fluid dynamics (CFD) modeling and experimental work to answer two research questions that are usually posed by researchers and managers of water treatment plants: ‘Is the effect of wind on settling tanks important?’ and ‘How can we determine this effect in our settling tanks?’ We apply this procedure in the water treatment plant of Aharnes, Athens to derive the following conclusions. (1) The effect of wind increases with increasing co-current wind velocity, increasing settling velocity and decreasing flow rate. (2) In windy steady-state flow conditions, the degree of complexity and three-dimensionality of the flow field that is observed in calm conditions is reduced and the removal efficiency decreases from 85.1 in calm conditions to 82.0%. Predicted efficiencies for constant and variable inlet solids' concentrations compare favorably with measurements. (3) In windy, transient flow conditions, field data show that the effect of wind on the tank's efficiency can be very pronounced and within the first half hour of the windy period the efficiency decreases to approximately 55%; the present model does not capture this effect, because it cannot simulate the sludge layer and the subsequent re-suspension of the settled solids.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference24 articles.

1. Quantification of wind induced resuspension in a shallow lake;Water Science and Technology,1984

2. Numerical simulation of rectangular settling tanks;Journal of Hydraulic Research,1985

3. Large-eddy simulations of particle sedimentation in a longitudinal sedimentation basin of a water treatment plant. Part 2: the effects of baffles;Chemical Engineering Journal,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3