Eutrophication forecasting and management by artificial neural network: a case study at Yuqiao Reservoir in North China

Author:

Zhang Ya1,Huang Jinhui Jeanne2,Chen Liang1,Qi Lan1

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China

2. College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China

Abstract

Yuqiao Reservoir is the potable water supply source for a city with a population of more than 14 million. Eutrophication has threatened the reliability of drinking water supplies and, therefore, the forecasting systems for eutrophication and sound management become urgent needs. Water temperature and total phosphorus have long been considered as the major influencing factors to eutrophication. This study used the artificial neural network (ANN) model to forecast three water quality variables including water temperature, total phosphorus, and chlorophyll-a in Yuqiao Reservoir. Two weeks in advance for forecasting was chosen to ensure a sufficient preparation response time for algae outbreak. The Nash–Sutcliffe coefficient of efficiency (R2) was between 0.84 and 0.99 for the training and over-fitting test data sets, while it was between 0.59 and 0.99 for the validation data set. To better respond to the algae outbreak, a number of management scenarios formed by orthogonal experimental design were modeled to assess the responses of chlorophyll-a and an optimal management scenario was identified, which can reduce chlorophyll-a by 23.8%. This study demonstrates that ANN model is potentially useful for forecasting eutrophication up to 2 weeks in advance. It also provides valuable information for the sound management of nutrient loads to reservoirs.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3