Practical benchmarking of statistical and machine learning models for predicting the condition of sewer pipes in Berlin, Germany
Author:
Affiliation:
1. Kompetenzzentrum Wasser Berlin, Cicerostr. 24, Berlin, Germany
2. Pontificia Universidad Javeriana, Faculty of Engineering, Bogotá, DC, Colombia
3. Berliner Wasser Betriebe, Neue Jüdenstraße, 10179 Berlin, Germany
Abstract
Publisher
IWA Publishing
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Link
http://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
Reference36 articles.
1. Benefits of using basic, imprecise or uncertain data for elaborating sewer inspection programmes;Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance,2015
2. American Water Works Association 2012 Buried No Longer: Confronting America's Water Infrastructure Challenge. AWWA's Infrastructure Financing Report.
3. Modeling the structural deterioration of urban drainage pipes: the state-of-the-art in statistical methods;Urban Water Journal,2010
4. An investigation of the factors influencing sewer structural deterioration;Urban Water Journal,2009
5. ASCE 2011 Failure to act: the Economic Impact of Current Investment Trends in Water and Wastewater Treatment Infrastructure. ASCE report.
Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Data augmentation using conditional generative adversarial network (cGAN): applications for sewer condition classification and testing using different machine learning techniques;Journal of Hydroinformatics;2024-06-13
2. A multiobjective optimization approach for wastewater network long-term rehabilitation planning: a case study;Water Practice & Technology;2024-01-01
3. Evaluating the generalizability and transferability of water distribution deterioration models;Reliability Engineering & System Safety;2024-01
4. Wastewater network assets' lifespan prediction: can we modify the machine learning algorithms to fit the purpose?;2024
5. A parsimonious approach to predict regions affected by sewer-borne contaminants in urban aquifers;Environmental Monitoring and Assessment;2023-11-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3