LSTM-based autoencoder models for real-time quality control of wastewater treatment sensor data

Author:

Seshan Siddharth1ORCID,Vries Dirk1ORCID,Immink Jasper1ORCID,van der Helm Alex2ORCID,Poinapen Johann1ORCID

Affiliation:

1. a KWR Water Research Institute, Nieuwegein, The Netherlands

2. b Waternet, Amsterdam, The Netherlands

Abstract

Abstract The operation of smart wastewater treatment plants (WWTPs) is increasingly paramount in improving effluent quality, facilitating resource recovery and reducing carbon emissions. To achieve these objectives, sensors, monitoring systems, and artificial intelligence (AI)-based models are increasingly being developed and utilised for decision support and advanced control. Key to the adoption of advanced data-driven control of WWTPs is real-time data validation and reconciliation (DVR), especially for sensor data. This research demonstrates and evaluates real-time AI-based data quality control methods, i.e. long short-term memory (LSTM) autoencoder (AE) models, to reconcile faulty sensor signals in WWTPs as compared to autoregressive integrated moving average (ARIMA) models. The DVR procedure is aimed at anomalies resulting from data acquisition issues and sensor faults. Anomaly detection precedes the reconciliation procedure using models that capture short-time dynamics (SD) and (relatively) long-time dynamics (LD). Real data from an operational WWTP are used to test the DVR procedure. To address the reconciliation of prolonged anomalies, the SD is aggregated with an LD model by exponential weighting. For reconciling single-point anomalies, both ARIMA and LSTM AEs showed high accuracy, while the accuracy of reconciliation regresses quickly with increasing forecasting horizons for prolonged anomalous events.

Funder

Horizon 2020 Framework Programme

BTO

Publisher

IWA Publishing

Reference33 articles.

1. Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., Corrado G. S., Davis A., Dean J., Devin M., Ghemawat S., Goodfellow I., Harp A., Irving G., Isard M., Jia Y., Jozefowicz R., Kaiser L., Kudlur M., Levenberg J., Mane D., Monga R., Moore S., Murray D., Olah C., Schuster M., Shlens J., Steiner B., Sutskever I., Talwar K., Tucker P., Vanhoucke V., Vasudevan V., Viegas F., Vinyals O., Warden P., Wattenberg M., Wicke M., Yu Y. & Zheng X. 2016 TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. https://arxiv.org/abs/1603.04467v2.

2. Arundo Analytics, Inc. 2020 ADTK: Anomaly Detection Toolkit (Version 0.6.2) [Software]. PyPi. Available from: https://adtk.readthedocs.io/en/stable/index.html.

3. Intelligent sensor validation for sustainable influent quality monitoring in wastewater treatment plants using stacked denoising autoencoders

4. Missing data imputation and sensor self-validation towards a sustainable operation of wastewater treatment plants via deep variational residual autoencoders

5. Learning deep architectures for AI;Bengio,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3