Monitoring domestic water consumption: a comparative study of model-based and data-driven end-use disaggregation methods

Author:

Pavlou Pavlos V.1ORCID,Filippou Stylianos1ORCID,Solonos Solon1,Vrachimis Stelios G.1ORCID,Malialis Kleanthis1ORCID,Eliades Demetrios G.1ORCID,Theocarides Theocharis12ORCID,Polycarpou Marios M.12ORCID

Affiliation:

1. a KIOS Research and Innovation Center of Excellence, University of Cyprus, Nicosia, Cyprus

2. b Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus

Abstract

ABSTRACT Monitoring the water usage of different appliances and informing consumers about it has been shown to have an impact on their behavior toward drinking water conservation. The most practical and cost-effective way to accomplish this is through a non-intrusive approach, that locally analyzes data received from a flow sensor at the main water supply pipe of a household. In this work, we present two different methods addressing the challenges of disaggregating end-use consumption and classifying consumption events. The first method is model-based (MB) and uses a combination of dynamic time wrapping and statistical bounds to analyze four water end-use characteristics. The second, learning-based (LB) method is data-driven and formulates the problem as a time-series classification problem without relying on a priori identification of events. We perform an extensive computational study that includes a comparison between an MB and an LB method, as well as an experimental study to demonstrate the application of the LB method on an edge computing device. Both methods achieve similar F1 scores (LB: 71.73%, MB: 71.04%) with the LB being more precise. The embedded LB method achieves a slightly higher score (72.01%) while enhancing on-site real-time processing, improving security and privacy and enabling cost savings.

Funder

European Union Horizon 2020

European Regional Development Fund and the Republic of Cyprus

Publisher

IWA Publishing

Reference42 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3