Towards a hybrid algorithm for the robust calibration of rainfall–runoff models

Author:

Okkan Umut1,Kirdemir Umut1

Affiliation:

1. Department of Civil Engineering, Hydraulic Division, Balikesir University, Balikesir, Turkey

Abstract

Abstract In this study, the hybrid particle swarm optimization (HPSO) algorithm was proposed and practised for the calibration of two conceptual rainfall–runoff models (dynamic water balance model and abcde). The performance of the developed method was compared with those of several metaheuristics. The models were calibrated for three sub-basins, and multiple performance criteria were taken into consideration in comparison. The results indicated that HPSO was derived significantly better and more consistent results than other algorithms with respect to hydrological model errors and convergence speed. A variance decomposition-based method – analysis of variance (ANOVA) – was also used to quantify the dynamic sensitivity of HPSO parameters. Accordingly, the individual and interactive uncertainties of the parameters defined in the HPSO are relatively low.

Funder

Balikesir Üniversitesi

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference59 articles.

1. Comparison of Stochastic Optimization Algorithms in Hydrological Model Calibration

2. Weed Optimization Algorithm for Optimal Reservoir Operation

3. A modified artificial bee colony algorithm for numerical function optimization;Babayigit,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3