Regionalization of landscape characteristics to map hydrologic variables

Author:

Peterson H. M.1,Nieber J. L.1,Kanivetsky R.1,Shmagin B.2

Affiliation:

1. Department of Bioproducts and Biosystems Engineering, University of Minnesota, Biosystems and Agricultural Engineering Building, 1390 Eckles Avenue, St. Paul, Minnesota 55108, USA

2. Water Resources Institute and Department of Agricultural and Biosystems Engineering, South Dakota State University Agricultural Engineering Building, 1400 North Campus Drive, Brookings, South Dakota 57007, USA

Abstract

By integrating groundwater, surface water and vadose zone systems, the terrestrial hydrologic system can be used to spatially map water balance characteristics spanning local to global scales, even when long-term stream gauge data are unavailable. The Watershed Characteristics Approach (WCA) is a hydrologic estimation model developed using a system-based approach focused on the regionalization of landscape characteristics to define unique hierarchical hydrogeological units (HHUs) and establish their link to hydrologic characteristics. Although the WCA can be used to map any hydrologic variable, its validity is demonstrated by summarizing results generated by applying the methodology to quantify the renewable groundwater flux at a spatial scale lacking long-term stream gauge monitoring data. Landscape components for 97 East-Central Minnesota (ECM) watersheds were summarized and used to identify which unique combinations of characteristics statistically influenced mean annual minimum groundwater recharge. These resulting combinations of landscape characteristics defined each HHU; as additional characteristics were applied, units were refined to create a hierarchical organization. Results were mapped to spatially represent the renewable groundwater flux for ECM, demonstrating how hydrologic regionalization can address knowledge gaps in multi-scale processes and aid in quantifying water balance components, an essential key to sustainable water resources management.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3