Affiliation:
1. a Department of Civil Engineering, University of North Dakota, Grand Forks, USA
2. b Department of Civil Engineering, Tarbiat Modares University, Tehran, Iran
Abstract
Abstract
This research introduces a novel nonlinear Muskingum model for river flood routing, aiming to enhance accuracy in modeling. It integrates lateral inflows using the Whale Optimization Algorithm (WOA) and employs a distributed Muskingum model, dividing river reaches into smaller intervals for precise calculations. The primary goal is to minimize the Sum of Square Errors (SSE) between the observed and modeled outflows. Our methodology is applied to six distinct flood hydrographs, revealing its versatility and efficacy. For Lawler's and Dinavar's flood data, the single-reach Muskingum model outperforms multi-reach versions, demonstrating its effectiveness in handling lateral inflows. For Lawler's data, the single-reach model (NR = 1) yields optimal parameters of K = 0.392, x = 0.027, m = 1.511, and β = 0.010, delivering superior results. Conversely, when fitting flood data from Wilson, Wye, Linsley, and Viessman and Lewis, the multi-reach Muskingum model exhibits better overall performance. Remarkably, the model excels with the Viessman and Lewis flood data, especially with two reaches (NR = 2), achieving a 21.6% SSE improvement while employing the same parameter set. This research represents a significant advancement in flood modeling, offering heightened accuracy and adaptability in river flood routing.
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献