A novel nested dynamic programming (nDP) algorithm for multipurpose reservoir optimization

Author:

Delipetrev Blagoj1,Jonoski Andreja2,Solomatine Dimitri P.23

Affiliation:

1. University Goce Delcev, Krste Misirkov bb, Shtip 2000, Republic of Macedonia and University of Information Science and Technology ‘St. Paul the Apostle’, Partizanska bb, Ohrid 6000, Republic of Macedonia

2. UNESCO-IHE Institute for Water Education, Westvest 7, AX Delft 2611, The Netherlands

3. Water Resources Section, Delft University of Technology, Delft, The Netherlands

Abstract

In this article we present a novel nested dynamic programming (nDP) algorithm for multipurpose reservoir optimization with additional decision variables related to different water users. The nDP algorithm is built from two algorithms: (1) dynamic programming (DP) and (2) nested optimization algorithm implemented with Simplex and quadratic Knapsack methods. The novel idea is to include a nested optimization algorithm into the DP transition that reduces the initial problem dimension and alleviates the DP's curse of dimensionality. The nDP can solve multi-objective optimization problems, without significantly increasing the algorithm complexity and the computational expenses. Computationally, the nDP can handle dense and irregular variable discretization; it is coded in Java as a prototype application and has been successfully tested with eight objectives at the Knezevo reservoir in the Republic of Macedonia. The article presents a discussion on comparison of nDP with other DP methods and highlights the advantages of nDP.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference14 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3