Flood risk assessment using machine learning, hydrodynamic modelling, and the analytic hierarchy process

Author:

Huu Duy Nguyen1,Tuan Pham Le1,Xuan Linh Nguyen1,Van Truong Tran1,Dang Dinh Kha2,Quang Hai Truong3,Bui Quang-Thanh1

Affiliation:

1. a Faculty of Geography, University of Science, Vietnam National University, Ha Noi, 334 Nguyen Trai, Thanh Xuan district, Hanoi, Vietnam

2. b Faculty of Hydrology, Meteorology, and Oceanography, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan district, Hanoi, Vietnam

3. c Institute of Vietnamese Studies & Development Sciences, Vietnam National University (VNU), Hanoi 10000, Vietnam

Abstract

ABSTRACT The objective of this study was to develop a theoretical framework based on machine learning, the hydrodynamic model, and the analytic hierarchy process (AHP) to assess the risk of flooding downstream of the Ba River in the Phu Yen. The framework was made up of three main factors: flood risk, flood exposure, and flood vulnerability. Hazard was calculated from flood depth, flood velocity, and flood susceptibility, of which depth and velocity were calculated using the hydrodynamic model, and flood susceptibility was built using machine learning, namely, support vector machines, decision trees, AdaBoost, and CatBoost. Flood exposure was constructed by combining population density, distance to the river, and land use/land cover. Flood vulnerability was constructed by combining poverty level and road density. The indices of each factor were integrated using the AHP. The results showed that the hydraulic model was successful in simulating flood events in 1993 and 2020, with Nash–Sutcliffe efficiency values of 0.95 and 0.79, respectively. All machine learning models performed well, with area under curve (AUC) values of more than 0.90; among them, AdaBoost was most accurate, with an AUC value of 0.99.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3