Simulation of dam-break flood and risk assessment: a case study of Chengbi River Dam in Baise, China

Author:

Mo Chongxun12,Cen Weiyan12,Lei Xingbi12ORCID,Ban Huazhen3,Ruan Yuli12,Lai Shufeng12,Shen Yue12,Xing Zhenxiang4

Affiliation:

1. a Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning, China

2. b Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Civil Engineering and Architecture, Guangxi University, Nanning, China

3. c Guangxi Hydraulic Research Institute, Nanning, China

4. d School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China

Abstract

Abstract When a reservoir is damaged, it will bring destruction to people's lives and the regional economy. Flood simulation and risk assessment are two effective ways to mitigate flood risk. Flood risk is assessed by using flood hazard and vulnerability indices. However, one of the key concerns is how to quantify hazards and vulnerabilities more rationally. To this end, this study introduces a new quantitative method for flood risk assessment. Three schemes – full dam breach (S1), 1/2 dam breach (S2), and 1/3 dam breach (S3) – were proposed for flood simulation. HEC-RAS 2D was used to simulate the evolution process of dam-break floods. This study used a new quantification approach to calculate flood risk based on simulation results. The results show the following: (1) The inundation process is similar under the three schemes, but the degree differs. The greater the degree of dam break, the greater the inundation depth, maximum flow velocity, and inundation duration. (2) High-risk areas decrease with decreased dam break degree. Under the three schemes, the flood risk areas of Longjing Street account for 65.37, 71.41, and 66.22% of the total risk areas, respectively, which are the areas most affected by dam-break floods.

Funder

National Natural Science Foundation of China

Interdisciplinary Scientific Research Foundation of Guangxi University

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3