Data transformation for neural network models in water resources applications

Author:

Bowden Gavin J.1,Dandy Graeme C.1,Maier Holger R.1

Affiliation:

1. Centre for Applied Modelling in Water Engineering, School of Civil and Environmental Engineering, The University of Adelaide, Adelaide 5005, Australia

Abstract

A step that should be considered when developing artificial neural network (ANN) models for water resources applications is the selection of an appropriate transformation of the data. In general, the primary motivations for data transformation are: (1) to scale the data so as to be commensurate with the transfer function in the output layer; (2) to standardise each of the variables; (3) to provide a suitable initialization of the ANN; and (4) to modify the distribution of the input variables to provide a better mapping to the outputs. In this paper, five different transformations are investigated in an attempt to improve the ANN's forecasting ability. These are: linear transformation, logarithmic transformation, histogram equalization, seasonal transformation and a transformation to normality. A case study is presented in which each of the ANN models developed using the different transformation techniques is used to forecast salinity in the River Murray at Murray Bridge (South Australia) 14 days in advance. When tested on a validation set from July 1992 to March 1998, the model developed using the linear transformation resulted in the lowest root mean squared forecasting error. This finding further strengthens the claim that the probability distribution of the data does not need to be known to develop effective ANN models. No improvement in the ANN model's forecasting ability was made using the logarithmic, seasonal and normality transformations. The model developed using histogram equalization produced good results for data within the training domain but was not robust on new patterns outside of the calibration range.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3