Simulated annealing algorithm optimized GRU neural network for urban rainfall-inundation prediction

Author:

Yan Ying1ORCID,Zhang Wenting12ORCID,Liu Yongzhi34,Li Zhixuan1

Affiliation:

1. a College of Hydrology and Water Resource, Hohai University, Nanjing 210098, China

2. b The State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

3. c Hydrology and Water Resources Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China

4. d The State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, NHRI, Nanjing 210029, China

Abstract

Abstract In the context of global climate change and the continuous development of urban areas, rainfall-inundation modeling is a common approach that provides critical support for the protection and early warning of urban waterlogging protection. The present study conducts a data-driven model for hourly urban rainfall-inundation depth prediction, which is based on a gated recurrent unit (GRU) neural network and uses the simulated annealing (SA) algorithm for the hyperparameter optimization of GRU, namely the SA-GRU model. To verify the performance of the proposed model, backpropagation, long short-term memory (LSTM), and bidirectional LSTM (BiLSTM) neural networks are set as benchmarks. Results show that the SA-GRU has high accuracy in the case of short-term inundation prediction, with the Nash–Sutcliffe efficiency from 0.999 to 0.596 for the 1-h-ahead to 8-h-ahead predictions. And further research reveals that the SA-GRU integrates the significant optimization of SA, with an average 20% reduction of the root mean square error within the first eight prediction periods, and the efficient training speed of GRU, with 23.7% faster than LSTM and 44.2% faster than BiLSTM. In conclusion, the SA-GRU excels in urban inundation prediction, demonstrating its value in flood management and decision-making.

Funder

National Natural Science Foundation of China

National key research and development program of China

Special Basic Research Key Fund for Central Public Scientific Research Institutes

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3