Affiliation:
1. Dept. of Civil and Environmental Engineering, North Dakota State University, Dept 2470, P.O. Box 6050, Fargo, ND 58108-6050, USA
Abstract
Abstract
Using the existing measures for training numerical (non-categorical) prediction models can cause misclassification of droughts. Thus, developing a drought category-based measure is critical. Moreover, the existing fixed drought category thresholds need to be improved. The objective of this research is to develop a category-based scoring support vector regression (CBS-SVR) model based on an improved drought categorization method to overcome misclassification in drought prediction. To derive variable threshold levels for drought categorization, K-means (KM) and Gaussian mixture (GM) clustering are compared with the traditional drought categorization. For drought prediction, CBS-SVR is performed by using the best categorization method. The new drought model was applied to the Red River of the North Basin (RRB) in the USA. In the model training and testing, precipitation, temperature, and actual evapotranspiration were selected as the predictors, and the target variables consisted of multivariate drought indices, as well as bivariate and univariate standardized drought indices. Results indicated that the drought categorization method, variable threshold levels, and the type of drought index were the major factors that influenced the accuracy of drought prediction. The CBS-SVR outperformed the support vector classification and traditional SVR by avoiding overfitting and miscategorization in drought prediction.
Funder
national science foundation
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献