Development of category-based scoring support vector regression (CBS-SVR) for drought prediction

Author:

Bazrkar Mohammad Hadi1ORCID,Chu Xuefeng1ORCID

Affiliation:

1. Dept. of Civil and Environmental Engineering, North Dakota State University, Dept 2470, P.O. Box 6050, Fargo, ND 58108-6050, USA

Abstract

Abstract Using the existing measures for training numerical (non-categorical) prediction models can cause misclassification of droughts. Thus, developing a drought category-based measure is critical. Moreover, the existing fixed drought category thresholds need to be improved. The objective of this research is to develop a category-based scoring support vector regression (CBS-SVR) model based on an improved drought categorization method to overcome misclassification in drought prediction. To derive variable threshold levels for drought categorization, K-means (KM) and Gaussian mixture (GM) clustering are compared with the traditional drought categorization. For drought prediction, CBS-SVR is performed by using the best categorization method. The new drought model was applied to the Red River of the North Basin (RRB) in the USA. In the model training and testing, precipitation, temperature, and actual evapotranspiration were selected as the predictors, and the target variables consisted of multivariate drought indices, as well as bivariate and univariate standardized drought indices. Results indicated that the drought categorization method, variable threshold levels, and the type of drought index were the major factors that influenced the accuracy of drought prediction. The CBS-SVR outperformed the support vector classification and traditional SVR by avoiding overfitting and miscategorization in drought prediction.

Funder

national science foundation

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3