A hybrid annual runoff prediction model using echo state network and gated recurrent unit based on sand cat swarm optimization with Markov chain error correction method

Author:

Wang Jun1,Wang Wenchuan1ORCID,Hu Xiao-xue1,Gu Miao1,Hong Yang-hao1,Zang Hong-fei1

Affiliation:

1. 1 College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Abstract

ABSTRACT This study proposes a hybrid model based on the combination of Sand Cat Swarm Optimization (SCSO), Echo State Network (ESN), Gated Recurrent Unit (GRU), Least Squares Method (LSM), and Markov Chain (MC) to improve the accuracy of annual runoff prediction. Firstly, conduct correlation analysis on multi-factor data related to runoff to determine the input of the model. Secondly, the SCSO algorithm is used to optimize the parameters of the ESN and GRU models, and the SCSO-ESN and SCSO-GRU models are established. Next, the prediction results of these two models are coupled using LSM to obtain the preliminary prediction results of the SCSO-ESN-GRU model. Finally, the initial prediction results are corrected for errors using MC to get the final prediction results. Choose Changshui Station and Lanxi Station for experiments, and evaluate the predictive performance of the model through five evaluation indicators. The results show that the combined prediction model corrected by the MC achieved the optimal prediction performance at both experimental stations. This study emphasizes that using a combination prediction model based on Markov chain correction can significantly improve the accuracy of annual runoff prediction, providing a reliable basis for predicting annual runoff in complex watersheds.

Funder

The support of special project for collaborative innovation of science and technology in 2021

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3