Optimal hydropower operation of multi-reservoir systems: hybrid cellular automata-simulated annealing approach

Author:

Azizipour Mohamad1,Sattari Ali2,Afshar Mohammad Hadi2,Goharian Erfan3,Solis Samuel Sandoval4

Affiliation:

1. Faculty of Civil and Architectural Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2. School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

3. Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208, USA

4. Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA

Abstract

Abstract Hydropower operation of multi-reservoir systems is very difficult to solve mostly due to their nonlinear, nonconvex and large-scale nature. While conventional methods are long known to be incapable of solving these types of problems, evolutionary algorithms are shown to successfully handle the complexity of these problems at the expense of very large computational cost, particularly when population-based methods are used. A novel hybrid cellular automata-simulated annealing (CA-SA) method is proposed in this study which avoids the shortcomings of the existing conventional and evolutionary methods for the optimal hydropower operation of multi-reservoir systems. The start and the end instances of time at each operation period is considered as the CA cells with the reservoir storages at these instances are taken as the cell state which leads to a cell neighborhood defined by the two adjacent periods. The local updating rule of the proposed CA is derived by projecting the objective function and the constraints of the original problem on the cell neighborhoods represented by an optimization sub-problem with the number of decision variables equal to the number of reservoirs in the system. These sub-problems are subsequently solved by a modified simulated annealing approach to finding the updated values of the cell states. Once all the cells are covered, the cell states are updated and the process is iterated until the convergence is achieved. The proposed method is first used for hydropower operation of two well-known benchmark problems, namely the well-known four- and ten-reservoir problems. The results are compared with the existing results obtained from cellular automata. Genetic algorithm and particle swarm optimization indicating that the proposed method is much more efficient than existing algorithms. The proposed method is then applied for long-term hydropower operation of a real-world three-reservoir system in the USA, and the results are presented and compared with the existing results.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3