Prediction of sediment transport rates in gravel-bed rivers using Gaussian process regression

Author:

Roushangar Kiyoumars1,Shahnazi Saman1

Affiliation:

1. Center of Excellence in Hydroinformatics, University of Tabriz, 29 Bahman Ave., Tabriz, Iran

Abstract

AbstractEstimating sediment transport rate in rivers has high importance due to the difficulties and costs associated with its measurement, which has drawn the attention of experts in water engineering. In this study, Gaussian process regression (GPR) is applied to predict the sediment transport rate for 19 gravel-bed rivers in the United States. To compare the performance of GPR, the support vector machine (SVM) as a common type of kernel-based models was developed. Model inputs of sediment transport were prepared based on two scenarios: the first scenario considers only hydraulic characteristics and the second scenario was formed using hydraulic and sediment properties. Obtained results revealed that the GPR models present better performance compared to the SVM models and other empirical sediment transport formulas. Also, it was found that incorporating the second scenario as input led to better predictions. In addition, performing sensitivity analysis showed that the ratio of average velocity to shear flow velocity is the most effective parameter in predicting the sediment transport rate of gravel-bed rivers.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference44 articles.

1. Sediment transport: new approach and analysis;Journal of the Hydraulics Division,1973

2. An ANFIS-based approach for predicting the bed load for moderately sized rivers;Journal of Hydro-Environment Research,2009

3. Machine learning approach to predict sediment load–a case study;CLEAN–Soil, Air, Water,2010

4. Prediction of side weir discharge coefficient by support vector machine technique;Water Science and Technology: Water Supply,2016

5. A general power equation for predicting bed load transport rates in gravel bed rivers;Water Resources Research,2004

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3