High temporal resolution rainfall rate estimation from rain gauge measurements

Author:

Song Yang1,Han Dawei1,Rico-Ramirez Miguel A.1

Affiliation:

1. Department of Civil Engineering, University of Bristol, Bristol BS8 1TR, UK

Abstract

Abstract Rainfall rates derived from tipping bucket rain gauges generally ignore the detailed variation at a finer temporal scale that particularly occurs in light rainfall events. This study extends the exploration of using artificial neural networks (ANNs), in comparison with the conventional linear interpolation method (LIM) and the cubic spline algorithm (CSA) for rainfall rate estimation at fine temporal resolution using rain gauge data based on a case study at Chilbolton and Sparsholt observatories, UK. A supervised feed-forward neural network integrated with the backpropagation algorithm is used to identify the complex nonlinear relationships between input and target variables. The results indicate that the ANN considerably outperforms the CSA and LIM with higher Nash–Sutcliffe efficiency, lower root mean square error and lower rainfall amount differences when compared to the disdrometer observations when the model is trained within a broad span of input values. Consistent stability in accurately estimating rainfall rate in different sites shows the intrinsic advantage of ANNs in learning and self-adaptive abilities in modelling complex nonlinear relationships between the inputs and target variables.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference26 articles.

1. The polarimetric basis for characterizing precipitation,2001

2. Rainfall estimation by rain gauge-radar combination: a concurrent multiplicative-additive approach;Water Resour. Res.,2009

3. Sampling errors of tipping-bucket rain gauge measurements;J. Hydrol. Eng.,2001

4. The elements of statistical learning;Elements,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3