Definition and application of the Péclet number threshold for water quality analysis in water distribution networks

Author:

Piazza Stefania1ORCID,Sambito Mariacrocetta1ORCID,Freni Gabriele1ORCID

Affiliation:

1. 1 Department of Engineering and Architecture, University of Enna ‘Kore’, Enna 94100, Italy

Abstract

ABSTRACT To assess the water quality within the distribution networks, simplified models are used, which adopt an advective–reactive approach and neglect diffusion–dispersion phenomena. Although such simplifications can be sufficiently accurate in complete turbulent uniform flow regimes, literature works demonstrated that they could produce wrong results in laminar and transitional regimes that are relevant when analysing low flows, dead-end pipes in looped distribution networks or service connections. On the other hand, advective simplification allows for considerable computational savings during the simulation of large networks. Therefore, a criterion is needed for better discriminate pipes in which the advective approach is sufficient or the diffusive approach is required. The present study aims to investigate the use of the Péclet number to discriminate the use of advective simplification both adopting the two-dimensional (2D) advection–dispersion equation and the one-dimensional (1D) cross-section averaged advection–dispersion equation. The numerical analysis was applied to a linear pipeline using the EPANET, 1D advective–dispersive–reactive, and EPANET-DD (Dynamic–Dispersion) models. The results showed the inadequacy of the Péclet number in discriminating the dominance of the advective–dispersive process in real systems, as it is linked to the pipe's length, regardless of the flow regime occurring on the pipeline.

Funder

This study was carried out within the RETURN Extended Partnership and received funding from the European Union Next-GenerationEU

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3