Modeling ion constituents in the Sacramento-San Joaquin Delta using multiple machine learning approaches

Author:

Namadi Peyman1ORCID,He Minxue1,Sandhu Prabhjot1

Affiliation:

1. 1 California Department of Water Resources, 1516 9th Street, Sacramento, CA, USA

Abstract

Abstract Salinity is of paramount importance in shaping water quality, ecosystem health, and the capacity to sustain diverse human and environmental demands in estuarine environments. Electrical conductivity (EC) is commonly utilized as an indirect measure of salinity, serving as a proxy for estimating other ion constituents within the Sacramento-San Joaquin Delta (Delta) of California, United States. This study investigates and contrasts four machine learning (ML) models (Regression Trees, Random Forest, Gradient Boosting, and Artificial Neuronal Networks) for approximating ion constituent concentrations based on EC measurements, emphasizing the enhancement of conversion for constituents exhibiting pronounced non-linear relationships with EC. Among the four models, the Artificial Neuronal Networks model outshines the others in predicting ion constituents from EC, especially for those displaying strong non-linear relationships with EC. All four ML models surpass traditional parametric regression equations in terms of accuracy in estimating ion concentrations. Furthermore, an interactive web browser-based dashboard is developed, catering to users with or without programming expertise, enabling ion level simulation within the Delta. By furnishing more precise ion constituent estimations, this research enriches the understanding of salinity's effects on water quality in the Delta and fosters well-informed water management decisions.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference47 articles.

1. Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat S., Irvin G., Isard M., Kudlur M., Levenberg J., Monga R., Moore S., Murray D., Steiner B., Tucker P., Vasudevan V., Warden P., Wicke M., Yu Y. & Zheng X. 2016 Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ‘16) (Vol. 16, No. 2016, pp. 265–283).

2. Ecotone or Ecocline: Ecological Boundaries in Estuaries

3. Assessment of soil salinity indexes using electrical conductivity sensors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3