Applying optimization methods for automatic calibration of 3D morphodynamic numerical models of shallow reservoirs: comparison between lozenge- and hexagon-shaped reservoirs

Author:

Shoarinezhad Vahid1ORCID,Wieprecht Silke1ORCID,Kantoush Sameh Ahmed2ORCID,Haun Stefan1ORCID

Affiliation:

1. a Institute for Modeling Hydraulic and Environmental Systems (IWS), University of Stuttgart, Stuttgart 70569, Germany

2. b Disaster Prevention Research Institute (DPRI), Kyoto University, Uji, Kyoto 611-0011, Japan

Abstract

Abstract Understanding the complexity of the siltation process and sediment resuspension in shallow reservoirs is vital for maintaining the reservoir functionality and implementing sustainable sediment management strategies. The geometry of reservoirs plays an indispensable role in the appearance of various flow structures inside the basin and, consequently, the pattern of the morphological evolution. In this study, a three-dimensional numerical model, coupled with optimization algorithms, is used to investigate the morphological bed changes in two symmetric shallow reservoirs having hexagon and lozenge shapes. This work aims to evaluate the applicability, efficiency, and accuracy of the automatic calibration routine, which can be a suitable replacement for the time-consuming and subjective method of manual model calibration. In this regard, two sensitive parameters (i.e., roughness height and sediment active layer thickness) are assessed. The goodness-of-fit between the calculated bed levels and the measured topography from physical models are presented by different statistical metrics. From the results, it can be concluded that the automatically calibrated models are in reasonable agreement with the observations. Employing a suitable optimization algorithm, which finds the best possible combination of investigated parameters, can considerably reduce the model calibration time and user intervention.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3