Evaluation of spatially variable control parameters in a complex catchment modelling system: a genetic algorithm application

Author:

Fang Tianjun1,Ball James E.2

Affiliation:

1. Water Research Laboratory, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

2. Faculty of Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia

Abstract

Successful implementation of a catchment modelling system requires careful consideration of the system calibration which involves evaluation of many spatially and temporally variable control parameters. Evaluation of spatially variable control parameters has been an issue of increasing concern arising from an increased awareness of the inappropriateness of assuming catchment averaged values. Presented herein is the application of a real-value coding genetic algorithm (GA) for evaluation of spatially variable control parameters for implementation with the Storm Water Management Model (SWMM). It was found that a real-value coding GA using multiple storms calibration was a robust search technique that was capable of identifying the most promising range of values for spatially variable control parameters. As the selection of appropriate GA operators is an important aspect of the GA efficiency, a comprehensive investigation of the GA operators in a high-dimensional search space was conducted. It was found that a uniform crossover operation was superior to both one-point and two-point crossover operations over the whole range of crossover probabilities, and the optimal uniform crossover and mutation probabilities for the complex system considered were in the range of 0.75–0.90 and 0.01–0.1, respectively.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3