Affiliation:
1. Lab for Spatial Informatics, International Institute of Information Technology, Hyderabad 500032, India
Abstract
Abstract
Machine learning (ML) has been increasingly adopted due to its ability to model complex and non-linearities between river water temperature (RWT) and its predictors (e.g., Air Temperature, AT). Most of these ML approaches have been applied using average AT without any detailed sensitivity analysis of other forms of AT (e.g., maximum and minimum). The present study demonstrates how new ML approaches, such as ridge regression (RR), K-nearest neighbors (KNN) regressor, random forest (RF) regressor, and support vector regression (SVR), can be coupled with Sobol’ global sensitivity analysis (GSA) to predict accurate RWT estimates with the most appropriate form of AT. Furthermore, the proposed ML approaches have been combined with the Ensemble Kalman Filter (EnKF), a data assimilation (DA) technique to improve the predicted values based on the measured data. The proposed modelling framework's effectiveness is demonstrated with a tropical river system of India, Tunga-Bhadra River, as a case study. The SVR has been noted as the most robust ML model to predict RWT at a monthly time scale compared with daily and seasonal. The study demonstrates how ML methods can be coupled with a global sensitivity algorithm and DA techniques to generate accurate RWT predictions in river water quality modelling.
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献