A parallelized algorithm to speed up 1D free-surface flow simulations in irrigation canals

Author:

Bessone Lucas1,Soler-Guitart Joan2,Gamazo Pablo1

Affiliation:

1. Water Department, Centro Universitario Regional Litoral Norte (CENUR LN), Universidad de la República, Av. Gral. Rivera 1350, 50000 Salto, Uruguay

2. CR. Sant Lluís 43, 08790 Gelida, Spain

Abstract

AbstractA parallel algorithm for 1D free-surface flow simulations in irrigation canals is shown. The model is based on the Hartree method applied to Saint-Venant equations. Due to the close-to-steady flow nature in irrigation canals, external and internal boundary conditions are linearized to preserve the parallel character. Gate trajectories, off-take withdrawals, and external boundary conditions are modeled as piece-wise functions of time, so there are discontinuities. To achieve a fully parallelized algorithm, an explicit version of the Hartree method is chosen, and external and internal boundary conditions are linearized around operation point. This approach is used to build a computer simulator, written in C-CUDA language. Two tests by ASCE Committee on Canal Automation Algorithms have been used to evaluate accuracy and performance of the algorithm. The Maricopa Stanfield benchmark has been used to prove its accuracy, and the Corning Canal benchmark to evaluate performance in terms of processing time. Surprisingly, solving a 12 hr-long prediction horizon with a cell size of about Δx= 10 m is less than 1 s on a Nvidia K40 card. Results were compared with a serial and a multi-CPU version of the same algorithm. The implementation that showed the best performance on different platforms is the one that uses GPU.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3