Interdependence of flow and pipe characteristics in transient induced contamination intrusion: numerical analysis

Author:

Keramat Alireza1,Payesteh Milad2,Brunone Bruno3,Meniconi Silvia3

Affiliation:

1. Civil Engineering Department, Jundi-Shapur University of Technology, Dezful, Iran

2. Civil Engineering Department, Shahrood University of Technology, Shahrood, Iran

3. Department of Civil and Environmental Engineering, University of Perugia, G. Duranti 93, 06125 Perugia, Italy

Abstract

Abstract Contaminant intrusion in pipelines during transients is a remarkable mechanism, which leads to a decline in the quality of the contained water. The negative pressure of water hammer pressure waves is the trigger for the suction of pollution from the surrounding leak area, and hence deteriorating water quality. The volume of contamination intruded into the pipeline is investigated using mathematical and numerical modeling of the phenomenon. To elucidate this phenomenon in real pipe systems, the intrusion amount is estimated for 72 different scenarios including: two lengths of pipeline (i.e. short and long), three different leak locations, three different fluid velocities in the pipe, two leak diameters and two pipeline materials (elastic and viscoelastic). The results showed that the amount of intrusion in viscoelastic pipes was clearly less than that in elastic pipes, especially in long pipelines. The critical zone of high intrusion risk is identified close to the downstream valve for small leak sizes, nevertheless, it is difficult to estimate this zone in the case of large leaks due to significant interactions between nodal components (valve, leak, reservoir).

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3