Sensitivity of groundwater flow with respect to the drain–aquifer leakage coefficient

Author:

Moezzibadi Mohammad1,Charpentier Isabelle1,Wanko Adrien1,Mosé Robert1

Affiliation:

1. Icube UMR 7357, Université de Strasbourg and CNRS, 2 rue Boussingault, 67000 Strasbourg, France

Abstract

Abstract Mitigation measures may be used to prevent soil and water pollution from waste disposal, landfill sites, septic or chemical storage tanks. Among them, drains and impervious barriers may be set up. The efficiency of this technique can be evaluated by means of groundwater modeling tools. The groundwater flow and the leakage drain–aquifer interactions are implemented in a conforming finite element method (FEM) and a mixed hybrid FEM (MHFEM) in a horizontal two-dimensional domain modeling regional aquifer below chemical storage tanks. Considering the influence of uncertainties in the drain–aquifer exchange rate parameter and using an automatic differentiation (AD) tool, the aim of this paper is to carry out a sensitivity analysis with respect to the leakage coefficient for the piezometric head, velocity field, and streamlines to provide a new insight into groundwater waterbody exchanges. Computations are performed with both an ideal homogeneous hydraulic conductivity and a realistic heterogeneous one. The tangent linear codes are validated using Taylor tests performed on the head and the velocity field. The streamlines computed using AD are well approximated in comparison with the nondifferentiated codes. Piezometric head computed by the MHFEM is the more sensitive, particularly near to the drain, than the FEM one.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference27 articles.

1. ADIFOR ‒ generating derivative codes from Fortran programs;Sci. Program.,1991

2. Sensitivity of stream-aquifer seepage to spatial variability of the saturated hydraulic conductivity of the aquifer;J. Hydrol.,2004

3. The MesODiF package for gradient computations with the atmospheric model Meso-NH;Environ. Modell. Softw.,2000

4. Local sensitivity analysis of a numerical model of volcanic plinian columns through automatic differentiation;Mat. Geo.,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3