Towards better utilization of NEXRAD data in hydrology: an overview of Hydro-NEXRAD

Author:

Krajewski Witold F.1,Kruger Anton1,Smith James A.2,Lawrence Ramon3,Gunyon Charles1,Goska Radoslaw1,Seo Bong-Chul1,Domaszczynski Piotr1,Baeck Mary Lynn2,Ramamurthy Mohan K.4,Weber Jeffrey4,Bradley A. Allen1,DelGreco Stephen A.5,Steiner Matthias6

Affiliation:

1. IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, IA 52242, USA

2. Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA

3. Computer Science, University of British Columbia, Okanagan, BC V1V 1V7, Canada

4. Unidata Program Center, UCAR, Boulder, CO 80307, USA

5. National Climatic Data Center, Ashville, NC 28801, USA

6. National Center for Atmospheric Research, Boulder, CO 80301, USA

Abstract

With a very modest investment in computer hardware and the open-source local data manager (LDM) software from University Corporation for Atmospheric Research (UCAR) Unidata Program Center, a researcher can receive a variety of NEXRAD Level III rainfall products and the unprocessed Level II data in real-time from most NEXRAD radars in the USA. Alternatively, one can receive such data from the National Climatic Data Center in Ashville, NC. Still, significant obstacles remain in order to unlock the full potential of the data. One set of obstacles is related to effective management of multi-terabyte datasets. A second set of obstacles, for hydrologists and hydrometeorologists in particular, is that the NEXRAD Level III products are not well suited for applications in hydrology. There is a strong need for the generation of high-quality products directly from the Level II data with well-documented steps that include quality control, removal of false echoes, rainfall estimation algorithms, coordinate conversion, georeferencing and integration with GIS. For hydrologists it is imperative that these procedures are basin-centered as opposed to radar-centered. The authors describe the Hydro-NEXRAD system that addresses the above challenges. With support from the National Science Foundation through its ITR program, the authors have developed a basin-centered framework for addressing all these issues in a comprehensive manner, tailored specifically for use of NEXRAD data in hydrology and hydrometeorology.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3