Prediction of local scour depth at bridge piers under clear-water and live-bed conditions: comparison of literature formulae and artificial neural networks

Author:

Toth E.1,Brandimarte L.2

Affiliation:

1. DICAM, University of Bologna, Italy, Via Risorgimento 2, Bologna, Italy

2. UNESCO-IHE, Institute for Water Education, The Netherlands, Westvest, 7, Delft, The Netherlands

Abstract

The scouring effect of the flowing water around bridge piers may undermine the stability of the structure, leading to extremely high direct and indirect costs and, in extreme cases, the loss of human lives. The use of Artificial Neural Network (ANN) models has been recently proposed in the literature for estimating the maximum scour depth around bridge piers: this study aims at further investigating the potentiality of the ANN approach and, in particular, at analysing the influence of the experimental setting (laboratory or field data) and of the sediment transport mode (clear water or live bed) on the prediction performances. A large database of both field and laboratory observations has been collected from the literature for predicting the maximum local scour depth as a function of a parsimonious set of variables characterizing the flow, the sediments and the pier. Neural networks with an increasing degree of specialization have been implemented – using different subsets of the calibration data in the training phase – and validated over an external validation dataset. The results confirm that the ANN scour depths' predictions outperform the estimates obtained by empirical formulae conventionally used in the literature and in the current engineering practice, and demonstrate the importance of taking into account the differences in the type of available data – laboratory or field data – and the sediment transport mode – clear water or live bed conditions.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3