A real options approach to the design and architecture of water supply systems using innovative water technologies under uncertainty

Author:

Zhang Stephen X.1,Babovic Vladan2

Affiliation:

1. Department of Industrial & System Engineering, Pontificia Universidad Catolica de Chile, Avenida Vicuna Mackenna 4860, Macul, Santiago, Chile

2. Singapore Delft Water Alliance, National University of Singapore, Engineering Workshop 1 #02-05, 2 Engineering Drive 2, S-117576, Singapore

Abstract

Water supply has become a priority for developed and developing nations of the world. Conventional water resources alone cannot meet the growing demand for water in urban cities. Management of the problem is amplified by uncertainty associated with different development strategies. Singapore has limited conventional water resources and progressively architects its water supply system through acquiring and sustaining multiple (alternative) water resources through innovative technologies. The full rationale and merits of such a policy cannot be properly understood based on traditional project valuation methods alone. This paper provides decision support using a real options approach by evaluating innovative water technologies from multiple perspectives under uncertainty. This paper demonstrates that incorporating innovative water technologies into water supply systems can concurrently improve water supply from the financial, political and socioeconomic perspectives. The development of innovative water technologies provides flexibility to the water supply system, and is a fundamental and effective means of risk management. The evaluation of innovative water technologies is based on an integrated real options approach, which provides decision support for architecting water supply systems under uncertainty. The approach gives specific tangible values for the water technologies and complements the general prescriptive Integrated Water Resources Management (IWRM) framework.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3