On the operational optimization of pump storage systems in water supply systems using PATs and time-differentiated energy prices

Author:

Lourenço Flávio1,Reis Ana Luísa12ORCID,Andrade-Campos António1ORCID

Affiliation:

1. a Department of Mechanical Engineering, Center for Mechanical Technology and Automation (TEMA), University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal

2. b INESC Coimbra, DEEC, University of Coimbra, Rua Sílvio Lima, Pólo II, Coimbra 3030-290, Portugal

Abstract

Abstract Power generation from fossil fuels has long had a negative impact on the environment. Nowadays, a paradigm shift in power generation is being witnessed, with increasing investment in renewable energy sources. Despite this progress, efficient energy storage is still limited. Given this challenge, pumped storage technology can be one of the viable solutions. This involves storing gravitational energy by pumping water into a reservoir at a higher altitude, which is later converted into electrical energy using a turbine. This paper studies a pump hydro storage system (PHS) operation in water supply systems (WSSs), with the aim of minimizing operating costs and evaluating its effectiveness. Replacing conventional pumps with pump-as-turbines (PATs) provides a flexible and cost-effective approach. The proposed methodology aims to optimize the operation of these PATs considering dynamic energy prices. The developed computational model was applied to different operational scenarios and analyzed in terms of cost-effectiveness. The results show that the lower the average ratio between time-differentiated purchase and fixed sell energy tariffs, the greater the optimization potential of using PAT. In the WSS case study analyzed, energy cost reductions of 43.4–68.1% were achieved, demonstrating the effectiveness of PHS in WSS particularly for energy tariffs with large variations.

Funder

Programa Operacional Regional do Centro

European Social Fund

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3