Facilitating radar precipitation data processing, assessment and analysis: a GIS-compatible python approach

Author:

Kreklow Jennifer1

Affiliation:

1. Leibniz Universität Hannover, Institute of Physical Geography and Landscape Ecology, Schneiderberg 50, 30167 Hannover, Germany

Abstract

Abstract A review of existing tools for radar data processing revealed a lack of open source software for automated processing, assessment and analysis of weather radar composites. The ArcGIS-compatible Python package radproc attempts to reduce this gap. Radproc provides an automated raw data processing workflow for nationwide, freely available German weather radar climatology (RADKLIM) and operational (RADOLAN) composite products. Raw data are converted into a uniform HDF5 file structure used by radproc's analysis and data quality assessment functions. This enables transferability of the developed analysis and export functionality to other gridded or point-scale precipitation data. Thus, radproc can be extended by additional import routines to support any other German or non-German precipitation dataset. Analysis methods include temporal aggregations, detection of heavy rainfall and an automated processing of rain gauge point data into the same HDF5 format for comparison to gridded radar data. A set of functions for data exchange with ArcGIS allows for visualisation and further geospatial analysis. The application on a 17-year time series of hourly RADKLIM data showed that radproc greatly facilitates radar data processing and analysis by avoiding manual programming work and helps to lower the barrier for non-specialists to work with these novel radar climatology datasets.

Funder

Hessian Agency for Nature Conservation, Environment and Geology

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference53 articles.

1. A GIS toolset for automated processing and analysis of radar precipitation data;Computers & Geosciences,2010

2. Flash flood detection through a multi-stage probabilistic warning system for heavy precipitation events;Advances in Geosciences,2011

3. Operational early warning systems for water-related hazards in Europe;Environmental Science & Policy,2012

4. HEC-Metvue – Tool for Real-Time Forecasting; Analyzing and Manipulating Gridded Datasets; Development of Design Storms for Probable Maximum Precipitation Estimation,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3