A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models

Author:

van Griensven A.1,Meixner T.2

Affiliation:

1. Environmental Sciences, University of California, Riverside, CA 92507, USA now at: UNESCO-IHE Water Education Institute, Department of Hydroinformatics and Knowledge Management, PO Box 3015, 2601 DA Delft, The Netherlandsa.vangriensven@unesco-ihe.organd BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium

2. Environmental Sciences, University of California, Riverside, CA 92507, USA Now at: College of Engineering, Department of Hydrology and Water Resources, University of Arizona, 845 North Park Avenue, Tucson, AZ 85721-0158, USATel: +1 520 626153 Fax: +1 520 6211422 tmeixner@hwr.arizona.edu

Abstract

Catchment water quality models have many parameters, several output variables and a complex structure leading to multiple minima in the objective function. General uncertainty/optimization methods based on random sampling (e.g. GLUE) or local methods (e.g. PEST) are often not applicable for theoretical or practical reasons. This paper presents “ParaSol”, a method that performs optimization and uncertainty analysis for complex models such as distributed water quality models. Optimization is done by adapting the Shuffled Complex Evolution algorithm (SCE-UA) to account for multi-objective problems and for large numbers of parameters. The simulations performed by the SCE-UA are used further for uncertainty analysis and thereby focus the uncertainty analysis on solutions near the optimum/optima. Two methods have been developed that select “good” results out of these simulations based on an objective threshold. The first method is based on χ2 statistics to delineate the confidence regions around the optimum/optima and the second method uses Bayesian statistics to define high probability regions. The ParaSol method was applied to a simple bucket model and to a Soil and Water Assessment Tool (SWAT) model of Honey Creek, OH, USA. The bucket model case showed the success of the method in finding the minimum and the applicability of the statistics under importance sampling. Both cases showed that the confidence regions are very small when the χ2 statistics are used and even smaller when using the Bayesian statistics. By comparing the ParaSol uncertainty results to those derived from 500,000 Monte Carlo simulations it was shown that the SCE-UA sampling used for ParaSol was more effective and efficient, as none of the Monte Carlo samples were close to the minimum or even within the confidence region defined by ParaSol.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3