Affiliation:
1. a Dr B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab 144008, India
2. b Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
Abstract
Abstract
A fundamental issue in the hydraulics of movable bed channels is the measurement of friction factor (λ), which represents the head loss because of hydraulic resistance. The execution of experiments in the laboratory hinders the predictability of λ over a short period of time. The major challenges that arise with traditional forecasting approaches are due to their subjective nature and reliance on various assumptions. Therefore, advanced machine learning (ML) and artificial intelligence approaches can be utilized to overcome this tedious task. Here, eight different ML techniques have been employed to predict the λ using eight different input features. To compare the performance of models, various error metrics have been assessed and compared. The graphical inferences from heatmap data visualization, Taylor diagram, sensitivity analysis, and parametric analysis with different input scenarios (ISs) have been carried out. Based on the outcome of the study, it has been observed that K Star in the IS1 with correlation coefficient (R2) value equal to 0.9716 followed by M5 Prime (0.9712) and Random Forest (0.9603) in IS2 and IS4, respectively, have provided better results as compared to the other ML models to predict λ in terms of least errors.
Funder
Core Research Grant, SERB Govt of India
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献