Affiliation:
1. Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
Abstract
Abstract
Future freshwater security relies on hydroclimatic (HC) shifts and regimes for sustainable development. The approximation of the HC system faces major uncertainties and complexities due to the incorporation of heavy datasets, characteristics, and constraints. The proposed study focused on the parallel computing of emulator modeling-based spatial optimization to enhance the HC systems with the perspective of future freshwater security in the Upper Chattahoochee River basin (UCR). Here, the framework compiles both physical and machine learning concepts with adaptive technology for the replication of real-world scenarios. Besides, it contains 2Emulator Model Fitting, Spatial Optimization, Parallel Computing, and Initial and Adaptive sampling to upgrade model efficiency, while UCR has inadequate groundwater and the assessment of freshwater security in UCR is more necessary for varying future climatic conditions. The results displayed that the proposed spatial optimization algorithm proved to be an effective and efficient approach in the approximation of HC models. The assessment of water security in UCR was showed in terms of scarcity and vulnerability indicators for median and low-level conditions, respectively. Moreover, this study provides the potential framework for the enhancement of physical model predictions with the incorporation of hybrid concepts for problem-solving technology which can provide significant information on HC issues.
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献