Tailoring electronic configurations in adsorptive sites for the enhancement of As(V) removal from groundwater

Author:

Tian Kaixun1,Xiao Jing1,Shen Jian1,Zhao He2

Affiliation:

1. Department of Environment and Resources, Hunan Engineering Laboratory for Complex Heavy Metal Wastewater Purification and Application Technology, Xiangtan University, Xiangtan 411105, China

2. Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Abstract In the past few decades, heavy metal pollution, such as As(V), has become an important issue for aqueous environment safety. For reasons of practical feasibility and cost-effectiveness, adsorption has been widely used in the water treatment and reuse community, with rapid development of adsorbents. However, the precise control of the electronic configuration of the adsorbents' sites to enhance adsorption performance is largely unexplored. In this study, to demonstrate the effect of electronic configuration on adsorption performance, we synthesized granular activated carbon (GAC) supported Fe-based hydroxides adsorbents by varying the valence state in transition metals. Furthermore, the adsorbents are characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) to identify surface structure and morphological properties. Adsorptive performance studies show that the adsorption capacity and arsenic removal efficiency of Fe(II)-GAC are twice those of Fe(III)-GAC, as a matter of charge transfer between adsorbents and cationic pollution (such as Fe-O and As species). Finally, PO43− was selected as a control sample to confirm the rationality of the removal mechanism. Collectively, fine-tuning of the electronic configuration from charge transfer will not only benefit heavy metal removal channels, but also supply fundamental information for adsorbents design for organics removal.

Funder

New Faculty Start-Up Funding from Xiangtan University

National Natural Science Foundation of China

Provincial Key Research and Development Plan of Hunan Province

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3