Simulation of a lock-release gravity current based on a non-hydrostatic model

Author:

Zhang Xueqing1,Yu Jinzhen1,Feng Yilei1

Affiliation:

1. Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China

Abstract

Abstract Gravity currents are important in many fields, including the estuarine sciences, meteorology and hydraulic engineering. The NHWAVE (non-hydrostatic wave) model was applied to simulate the detailed interface structure between a lock-release gravity current and the ambient fluid. The simulated structures, including the front height, front position and velocity of the current, are consistent with the results of laboratory experiments. However, the internal structure of the current is different from that revealed by previous research. The Kelvin–Helmholtz phenomenon in the interface and the interface vortices were successfully captured by the NHWAVE model. The difference in velocity between the front and rear vortices leads to entrainment, further causing changes in the shapes and amount of vortices. Flow field results obtained by the NHWAVE model reveal the existence of a significant circular flow, as well as some small eddies within it. The significant circular flow supports the forward movement of the current, whereas the small eddies reflect interface vortices. In contrast, hydrostatic simulation with the same model settings fails to capture the vortices. This research shows that the NHWAVE model performs better than a hydrostatic model when simulating the Kelvin–Helmholtz instability phenomenon and vortex entrainment in a lock-release gravity current.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference17 articles.

1. Turbulent lock release gravity current;Science in China (Series E),2001

2. Mixing in lock-release gravity currents;Dynamics Atmospheres and Oceans,1996

3. Experiments on gravity currents down a ramp in unstratified and linearly stratified salt water environments;Scientia Sinica Technologica,2016

4. Numerical modelling of turbidity currents in the Xiaolangdi reservoir, Yellow River, China;Journal of Hydrology,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Planning Interventions to Develop Blue Green Infrastructure on the Verge of Water Sensitivity: A Case of Lucknow, Uttar Pradesh;International Journal of Advanced Research in Science, Communication and Technology;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3