Detection of multiple leakage points in water distribution networks based on convolutional neural networks

Author:

Fang QianSheng1,Zhang JiXin1,Xie ChenLei1,Yang YaLong1

Affiliation:

1. Anhui Province Key Laboratory of Intelligent Building and Building Energy Saving, Anhui Jianzhu University, Hefei, China

Abstract

Abstract Currently, a total of 3.6 billion people live in water-deficient areas, and the population living in water-deficient areas may reach from 4.8 to 5.7 billion by 2050. Despite that, the water distribution system (WDS) loses an average of 35% of its water resources, and the leakage rates may reach even higher values in some regions. The dual pressures of the lack of water resources and severe WDS leakage become even more problematic considering that commonly used leakage detection methods are time-consuming, labour-intensive, and can only detect single-point leakages. For multiple leakage point detection, these methods often perform poorly. To solve the problem of multiple leakage point detection, this paper presents a method for multiple leakage point detection based on a convolutional neural network (CNN). A CNN can forecast the leakages from a macro-perspective. It extracts the features of the collected historical leakage data by constructing a CNN model and predicts whether the real-time data are leakage data or not based on the learning of the features that are extracted from the historical data. The experimental results show that the detection accuracies based on 21 sensors of one, two, and three leakage points are 99.63%, 98.58% and 95.25%, respectively. After the number of sensors is reduced to eight, the leakage detection accuracies of one, two, and three leakage points are 96.43%, 94.88% and 91.56%, respectively.

Funder

National Key Research and Development Project of China

Natural science research project of Anhui Provincial Department of Education

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference17 articles.

1. Frauendorfer R. Liemberger R. 2010 The Issues and Challenges of Reducing Non-Revenue Water. Asian Development Bank, Mandaluyong City, Philippines.

2. Intrinsic relationship between energy consumption, pressure, and leakage in water distribution systems;Urban Water Journal,2017

3. Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems;IEEE Transactions on Industrial Electronics,2018

4. Development of multiple leakage detection method for a reservoir pipeline valve system;Water Resources Management,2018

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3