Statistical assessment and neural network modeling of stream water quality observations of Green River watershed, KY, USA

Author:

Anmala Jagadeesh1,Venkateshwarlu Turuganti1

Affiliation:

1. Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra (Mandal), Medchal District, Hyderabad, Telangana 500 078, India

Abstract

Abstract The measurement and statistical modeling of water quality data are essential to developing a region-based stream-wise database that would be of great use to the EPA's needs. Such a database would also be useful in bio-assessment and in the modeling of processes that are related to riparian vegetation surrounding a water body such as a stream network. With the help of easily measurable data, it would be easier to come up with database-intensive numerical and computer models that explain the stream water quality distribution and biological integrity and predict stream water quality patterns. Statistical assessments of nutrients, stream water metallic and non-metallic pollutants, organic matter, and biological species data are needed to accurately describe the pollutant effects, to quantify health hazards, and in the modeling of water quality and its risk assessment. The study details the results of statistical nonlinear regression and artificial neural network models for Upper Green River watershed, Kentucky, USA. The neural network models predicted the stream water quality parameters with more accuracy than the nonlinear regression models in both training and testing phases. For example, neural network models of pH, conductivity, salinity, total dissolved solids, and dissolved oxygen gave an R2 coefficient close to 1.0 in the testing phase, while the nonlinear regression models resulted in less than 0.6. For other parameters also, neural networks showed better generalization compared with nonlinear regression models.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference18 articles.

1. Information theory and an extension of the maximum likelihood principle;Petrov,1973

2. GIS and artificial neural network-based water quality model for a stream network in the Upper Green River Basin, Kentucky, USA;Journal of Environmental Engineering,2015

3. A multivariate approach to assess habitat integrity in urban streams using benthic macroinvertebrate metrics;Water Science & Technology,2013

4. Development of a water quality assessment model: a water quality assessment model based on watershed characteristics by nonlinear regression;Water Science & Technology: Water Supply,2014

5. A watershed water quality evaluation model using data mining as an alternative to physical watershed models;Water Science & Technology: Water Supply,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3