Inactivation of health-related microorganisms in water using UV light-emitting diodes

Author:

Oguma Kumiko1,Rattanakul Surapong2,Masaike Mie3

Affiliation:

1. Research Center for Advanced Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

2. Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology, Thonburi, 126 Pracha-Utit Rd., Bangmod, Tungkru, Bangkok 10140, Thailand

3. Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Abstract

Abstract UV light-emitting diodes (UV-LEDs) offer various wavelength options, while microorganisms have spectral sensitivity, or so-called action spectra, which can be different among species. Accordingly, matching properly the emission spectra of UV-LEDs and the spectral sensitivity of microorganisms is a reasonable strategy to enhance inactivation. In this study, UV-LEDs with nominal peak emissions at 265, 280 and 300 nm were applied to pathogens including Legionella pneumophila, Pseudomonas aeruginosa, Vibrio parahaemolyticus and feline calicivirus, in comparison with indicator species including Escherichia coli, Bacillus subtilis spores, bacteriophage Qβ and MS2. The results indicated that, for all species tested, 265 nm UV-LED was highest in the fluence-based inactivation rate constant k, followed by 280 nm and 300 nm was much lower. The k value at 280 nm was close to that at 265 nm for feline calicivirus and MS2, suggesting that 280 nm UV-LED can be as good an option as 265 nm UV-LED to inactivate these viruses. Bacteria tended to show fluence-response curves with shoulder and tailing, while viruses followed log-linear profiles at all wavelengths tested. This study indicates the fluence-response profiles and the fluence required for a target inactivation of microorganisms, which would serve as reference data for future study and applications of UV-LEDs.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3