Control of mussel Mytilus galloprovincialis Lamarck fouling in water-cooling systems using plasma discharge

Author:

Ge Hui12,Wang Hongcheng2,Gao Zhiying3

Affiliation:

1. Department of Environment and Resource, Dalian Minzu University, Dalian, China

2. Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, China

3. Dalian Fisheries Research Institute, Dalian Fishery Bureau, Dalian, China

Abstract

Abstract To prevent marine macrofouling, the anti-fouling effect of liquid discharge on mussels Mytilus galloprovincialis Lamarck was investigated in a simulated water-cooling system. The effects of input energy, mussel distance from discharge center, continuous discharge time, and discharge energy distribution mode on mussel response (death or detachment) were systematically studied. The results showed that excellent anti-fouling effects could be achieved by increasing input energy, but the detachment rate and mortality of mussels decreased sharply when the mussels were farther away from the discharge center. Low frequency discharge for a long, continuous time and multiple stimuli at long intervals improved the anti-fouling effect. Shock waves are the most likely cause of mussel eradication, and the threshold values of peak pressure to prevent mussel settlement and to cause death were 0.02 MPa and 0.05 MPa, respectively.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3