Reduction of scum accumulation through the addition of low-cost enzymatic extract in the feeding of high-rate anaerobic reactor

Author:

Soares Juliana Lemos1,Cammarota Magali Christe1,Gutarra Melissa Limoeiro Estrada1,Volschan Isaac1

Affiliation:

1. Environmental Engineering Program, Federal University of Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, n° 149, Bl. A, Sl. 8, Ilha do Fundão, 21941-909 Rio de Janeiro, Brazil

Abstract

Abstract This work evaluates the reduction of scum accumulation on the top surface of upflow anaerobic sludge blanket (UASB) reactors by the addition of hydrolytic enzymes in their feed. For over 1 year, two UASB reactors of 1.4 L were maintained at 30 °C and continuously fed with synthetic domestic wastewater (containing 150 mg/L of soybean oil) under a hydraulic retention time of 10 h. The Control reactor was only fed with synthetic wastewater. Beginning at the 226th day of operation, low-cost hydrolytic enzymes (obtained by solid-state fermentation of Aspergillus terreus, a fungus isolated from a primary sewage sludge) were added into the feed of the other reactor (Test) for a lipase activity of 24 U/L, considerably reducing the formation of scum. In the Test reactor, the scum showed oil and grease (O&G) concentration between 0.8 and 1.3 g/L and an accumulation rate of 20 to 27 mg O&G/d. In the Control reactor, the scum had values twice as high (1.5–2.5 g/L and 34–51 mg O&G/d, respectively) and there were more operational problems. During the entire period of operation, both reactors presented high chemical oxygen demand removal (>80%), with no loss of effluent quality due to the addition of the enzymes.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference21 articles.

1. Solid-state fermentation for the production of lipases for environmental and biodiesel applications;Pandey,2018

2. Multipurpose fixed-bed bioreactor to simplify lipase production by solid-state fermentation and application in biocatalysis;Biochemical Engineering Journal,2019

3. Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations;Biochemical Engineering Journal,2000

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3