Synthesis and application of a molecularly imprinted polymer in selective solid-phase extraction of efavirenz from water

Author:

Mtolo Sinothando P.1,Mahlambi Precious N.1,Madikizela Lawrence M.2

Affiliation:

1. Department of Chemistry, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa

2. Department of Chemistry, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa

Abstract

Abstract Efavirenz is one of the antiretroviral drugs widely used to treat the human immunodeficiency virus. Antiretroviral drugs have been found to be present in surface water and wastewater. Due to complexity of environmental samples, solid-phase extraction (SPE) is used for isolation and pre-concentration of antiretroviral drugs prior to their chromatographic analysis. However, the commercially available SPE sorbents lack selectivity, which tends to prolong the analysis time. Therefore, in this study a molecularly imprinted polymer was synthesized for the specific recognition of efavirenz and then applied as the SPE sorbent for its extraction from wastewater and surface water samples. The imprinted and non-imprinted polymers were synthesized using a bulk polymerization technique where efavirenz was used as the template, 2-vinylpyridine as functional monomer, 1,1′-azobis-(cyclohexanecarbonitrile) as initiator, ethylene glycol dimethacrylate as cross-linker and toluene:acetonitrile (9:1, v/v) as the porogenic solvent mixture. The characterization was performed using Fourier transform infrared spectroscopy, scanning electron microscopy, Brunauer–Emmett–Teller, elemental analysis, and thermogravimetric analysis techniques. Results showed better selectivity of molecularly imprinted polymer to efavirenz than did non-imprinted polymer. The analysis was performed using high performance liquid chromatography equipped with a photo-diode array detector. The analytical method gave a detection limit of 0.41 μg/L and the analyte recovery of 81% in wastewater. The concentrations found in wastewater ranged from 2.79 to 120.7 μg/L, while in surface water they were between 0.975 and 2.88 μg/L. Therefore, the results of this study show a strong need for a detailed screening of efavirenz in major water utilities in the country.

Funder

National Research Foundation

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3