Economic assessment of aerated constructed treatment wetlands using whole life costing

Author:

Freeman A. I.1,Widdowson S.1,Murphy C.1,Cooper D. J.1

Affiliation:

1. ARM Group Limited, Rydal House, Colton Rd, Rugeley, Staffordshire, WS15 3HF, United Kingdom

Abstract

Abstract There is increasing pressure on water treatment practitioners to demonstrate and deliver best value and sustainability for the end user. The aim of this paper is to evaluate the sustainability and economics, using whole life costing, of wastewater treatment technologies used in small community wastewater treatment works (WwTW) of <2,000 population equivalent (PE). Three comparable wastewater treatment technologies – a saturated vertical flow (SVF) aerated wetland, a submerged aerated filter (SAF) and a rotating biological contactor (RBC) – were compared using whole life cost (WLC) assessment. The study demonstrates that the CAPEX of a technology or asset is only a small proportion of the WLC throughout its operational life. For example, the CAPEX of the SVF aerated wetland scenario presented here is up to 74% (mean = 66 ± 6%) less than the cumulative WLC throughout a 40-year operational time scale, which demonstrates that when comparing technology economics, the most cost-effective solution is one that considers both CAPEX and OPEX. The WLC assessment results indicate that over 40 years, the SVF aerated wetland and RBC technologies have comparable net present value (NPV) WLCs which are significantly below those identified for submerged aerated filter systems (SAF) for treatment of wastewater from communities of <1,000PE. For systems designed to treat wastewater from communities of >1,000PE, the SVF aerated wetland was more economical over 40 years, followed by the RBC and then the SAF. The aerated wetland technology can therefore potentially deliver long-term cost benefits and reduced payback periods compared to alternative treatment technologies for treating wastewater from small communities.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference43 articles.

1. Austin D. & NivalaJ.2009Energy Requirements for Nitrification and Biological Nitrogen Removal in Engineered Wetlands.

2. The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy;Ecosystem Services,2012

3. Capodaglio A. , CallegariA., CecconetD. & MolognoniD.2016Small Communities Decentralized Wastewater Treatment: Assessment of Technological Sustainability.

4. Emergy as embodied energy based assessment for local sustainability of a constructed wetland in Beijing;Communications in Nonlinear Science and Numerical Simulation,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3