A simple preparation route for polysilicate titanium salt from spent titanium solutions

Author:

Xu Bin1,Zhang Yingjie1,Li Xue1,Yao Yao1,Huang Xuesong1,Xia Shubiao2,Dong Peng1

Affiliation:

1. National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Kunming 650093, China; Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming 650093, China; and Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing 655011, China

Abstract

Abstract Polysilicate titanium salt (PST) is synthesized by using spent titanium solutions and polysilicic acid (PSiA) as raw materials. PSiA could improve the aggregation ability of titanium salt flocculants and also restrain the hydrolysis of Ti4+ to stabilize titanium salts. Meanwhile, replacing titanium salt with spent titanium solutions could reduce the cost of PST and solve the problem of wastewater treatment in the titanium industry, which makes valuable waste regeneration possible. Scanning electron microscopy (SEM) results show the morphology transformation (sheet, spheroid, and sphere) of PST with different Ti/Si molar ratios. The formation process of PST is analyzed by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). This study investigates the effect of Ti/Si molar ratios on PST flocculation performance in humic–kaolin water and actual domestic wastewater treatment. The in situ floc size change of PST is measured by laser particle size analyzer in humic–kaolin water treatment. Additionally, the performance of PST is comprehensively evaluated on flocculation and sedimentation ability, rapid sweep netting ability and stability. In short, the prepared PST in this study is suitable for treating wastewater with high turbidity and chemical oxygen demand (COD) in a wide range of pH values.

Funder

National Natural Science Foundation of China

Yunnan Provincial Science and Technology Major Project

Provincial Natural Science Foundation of Yunnan

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3