Combined system for the treatment and reuse of urban wastewater: the efficiency of anaerobic reactors + hybrid constructed wetlands + ozonation

Author:

Colares Gustavo Stolzenberg1,de Souza Celente Gleison1,da Silva Fagner Pereira1,de Loreto Adrison Carvalho1,Lutterbeck Carlos Alexandre1,Kist Lourdes Teresinha2,Machado Ênio Leandro1

Affiliation:

1. UNISC/PPGTA, Avenida Independência, 2293 – Universitário, Santa Cruz do Sul – RS, 96815-900, Brazil

2. Chemistry Department/PPGTA, Avenida Independência, 2293 – Universitário, Santa Cruz do Sul – RS, 96815-900, Brazil

Abstract

Abstract The research developed a combined system in batch flow and in pilot scale for the treatment and reuse of urban effluents. The system was fed raw effluent from a university campus in Brazil and composed of four anaerobic reactors, three constructed wetlands (CWs) and an ozonation unit. The three sequential hybrid constructed wetlands were composed of a floating treatment wetland, an aerobic-anoxic baffled constructed wetland (CW) and a saturated vertifcal flow CW. Later, during the last trimester, weekly samples of the treated effluent were ozonated by bubbling with an application rate of 240 mg.h-1 O3. The system presented high removal rates efficiencies in terms of carbonaceous organic matter (78.9%), nitrogen (91.0%), color (96.7%) and turbidity (99.1%). In addition, it worked well for disinfection and acute ecotoxicity, but P was only efficiently (75%) removed in the first 8 months, with removing efficiency declining after this period. Ozonation provided significant color removal and an increased pH. The combination of floating, alternated upflow and downflow and saturated vertical flows improved the treatment of wastewater. This was due to the presence of both aerobic and anaerobic zones, as well as the filter substrate, through an integrated system with simple construction and operation and increased lifespan.

Funder

CNPq

FAPERGS

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3