How much data is required for a robust and reliable wastewater characterization?

Author:

Yang Cheng1,Barrott Wendy2,Busch Andrea2,Mehrotra Anna3,Madden Jane3,Daigger Glen T.1

Affiliation:

1. University of Michigan Department of Civil and Environmental Engineering, Ann Arbor, MI, USA

2. Great Lakes Water Authority, Detroit, MI, USA

3. CDM Smith, Boston, MA, USA

Abstract

Abstract Water resource recovery facility (WRRF) modeling requires robust and reliable characterization of the wastewater to be treated. Poor characterization can lead to unreliable model predictions, which can have significant economic consequences when models are used to make important facility upgrade/expansion and operational decisions. Current wastewater characterization practice often involves a limited number of relatively short-duration intensive campaigns. On-going work at the Great Lakes Water Authority (GLWA) WRRF, serving 3.1 million residents in Southeast Michigan, provided an opportunity to conduct more detailed wastewater characterization over an annual cycle. The collection system includes a significant combined sewer component, and the WRRF provides primary and secondary treatment (high purity oxygen activated sludge) and phosphorus removal via ferric chloride addition. Detailed wastewater fractionation was conducted weekly over a one-year period. Daily conventional secondary influent and process operational data from that same period were used to evaluate the efficiency of various wastewater characterization strategies on the bioreactor mixed liquor volatile suspended solids (MLVSS) concentration calculated using an International Water Association (IWA) Activated Sludge Model Number 1 (ASM1) with minor modifications. An adaptive strategy consisting of a series of short-duration characterization campaigns, used to assess model fit for its intended purpose and continued until a robust and reliable model result, is recommended. Periods of unusual plant influent and/or operational conditions should be identified, and data from these periods potentially excluded from the analysis. Sufficient data should also be collected to identify periods when poor model structure, rather than wastewater characterization, leads to poor fit of the model to actual data.

Funder

Great Lakes Water Authority

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3